Vue.js & Nuxt.js

Frontend Made Declarative

What is Vue.js

= Progressive Framework for building Ul
= Declarative Rendering, MVVM

= Components

EDIT ON

Hello world

new Vue({
‘#app ',
: {

'Hello world’

Resources

Change ‘message’ in ‘data’ and see what happens.

https://codepen.io/panda2134/pen/XWRaReM

MVVM

= Apply all modifications of data to the ViewModel

= The view code, i.e. DOM Tree, will update accordingly

new Vue({ // create the ViewModel
el: '"#app', // mount the Vue app at #app

1)

v-if, v-show, v-for, v-on,
v-bind, v-model, v-text, v-html,

v-cloak, ...

Template & Directives

= f! variableName }}' interpolate variable into your HTML code. ("v-text ' is similar)
m ‘<div v-if="cond">Test</div>" onlyrendered when "cond" is a truthy value.

= otherwise, the element is taken away from the DOM tree.

" <div v-show="cond">Test</div>" set ‘display: none; when cond is a falsy value.

EDIT ON

HTML e CDEPEN

Hello world
new Vue({

: '#app',
:
: 'Hello world'

Resources

https://codepen.io/panda2134/pen/XWRaReM

Sometimes we want to declare methods in a Vue instance, which can be then used in event callbacks, etc.

Declare them in the ‘methods " property:

new Vue({
el: '#app', // currentVal is then injected into "this’
data: { currentVal: 1 },
methods: {
increaseBy (difference) { this.currentVal += difference }

by
1)

At times, we need to compute a property whose value is based on items in "data ', while maintaining
reactivity, i.e. its value will update accordingly if one of its dependency changes. Use ‘computed’ for this, and

use ‘plusTwo in the template like a normal data property.

new Vue({
el: '"#app', // currentVal is then injected into this’

data: { currentVal: 1 },
computed: { // will be updated when "currentVal changes. otherwise the cached value will be used.

plusTwo () { return this.currentVal + 2 }

by
1)

Use 'v-on' to listen on events. 'v-on:click' is equivalent to ‘@click

<button v-on:click="handleClick">Click Me</button>
<button v-on:click="counter += 1">Click Me</button>

EDIT ON

new Vue({
‘#app',

})

Resources

https://codepen.io/panda2134/pen/PomjoQm

Use 'v-for' to implement a loop in templates. In the following code, "list " is an array declared in data.

<div id="app'">

<li v-for="x in list">{{ x }}</Lli>

</div>

new Vue({

el: '#app',

data: { list: [9, 8, 7] }
1)

...will be rendered as:

<div id="app'">

<Lli>9<1i>8</1li><1i>7</1i>

</div>

When "list ' is modified, the corresponding parts in HTML are also re-rendered.

Use 'v-bind' to bind an attribute to the view model. When the data in view model is modified, the attribute
with "v-bind" will also be updated. (shorthand: "v-bind:prop="var" < " :prop="var"'

Use 'v-model = on form elements (e.g. <input>" and <select>") to bind the form element with a variable in
‘data .

How "v-model = works

= Edit the form element & "input event triggered - data in view model changes

= Edit variable in view model = “value " attribute binded onto the variable - content in the element changes

<input v-model="text">

...1s roughly equivalent to:

<input :value="text" @change="handleChange'">

and

new Vue({
el: '#app',
data: { text: '' 3},
methods: {
handleChange(evt) {
this.text = evt.target.value

by
by
1)

Have a try!

EDIT ON

Todo List

[Enter your todo item...]

new Vue({
: '#app',

})

Resources) 0.25x% Rerun

https://codepen.io/panda2134/pen/eYWRYNK

Single File Component
= Write HTML, CSS & JavaScript in a single " .vue " file.

= Usedin vue-cli' and Nuxt.js.

= Separated into 3 tags: <template>' ‘<script> & <style>

Example

Result

<template>
<div 1id="app">
<div class="add-todo'">
<input v-model="currentTodo"
@keyup.enter="pushTodo" placeholder="Type
something...">
</div>
<hr/>
<ul class="todo-items'>
<li class="todo-1tems row" v-for="x. 1

Resources

EDIT ON

C&RDEPEN

https://codepen.io/panda2134/pen/MWydxVQ

Composing with Components

= abstraction: application to tree of components

= components are small, self-contained and often reusable

-

ENCAPSULATION

<div> <!--From http://slides.com/sdrasner/intro-to-vue-3?7token=LwIVIblm#/4/0/2-->
<p></p>
<div></div>
<p></p>
<small></small>
</div>

J

<call-out />

= Components receive data from their parents via ‘props ', which is similar to attributes of HTML tags.

= They may also receive fragments of tags from parents, using <slot></slot>"

// hello-user.vue
<template>

Hello, {{ username }}
</template>

<script>
export default {
props: { username: String }

3

</script>

<template>
<div><hello-user username="admin" /><!l--you can also use v-bind:username--></div>
</template>
<script>
import HelloUser from './hello-user.vue'
export default {
components: { HelloUser } // import and register the component

b

</script>

data should be a function in components

Different from using new Vue' directly, because each component has its own isolated scope.

data: { a: 1 } X
data () { return { a: 1 } } v

S
EDIT ON

<div id="app">
<div class="row"> Data as an object
<h3>Data as an object</h3>
<countl></countl> 0 0 0
<countl></countl>
<countl></countl>
</div>

Data as a function

<div class="row'>
<h3>Data as a function</h3>
<count2></count2>

PP B 1O o mm e

Resources . 0.25x% Rerun

Thanks @sdras for her example!

https://codepen.io/sdras/pen/63d98696878200f6c0e987cd58341c39

One-way data flow

All props form a one-way-down binding between the child property and the parent one: when the parent property updates, it will flow
down to the child, but not the other way around. This prevents child components from accidentally mutating the parent’s state, which
can make your app’s data flow harder to understand. (from Vue.js documentation)

-> Never, ever write to your props like this:

<script>
export default {
props: { username: String },
methods: {
reverseUsername () { // XXX Vue will give a warning in console
this.username = this.username.split('').reverse().join('")

by
by
by

</script>

instead, copy ‘username’ before use in ‘data’, and use the copied value instead:

data () { //

return { usernameVal: this.username }

b

<navigation-link url="/profile">
<font-awesome-icon name="user'"></font-awesome-icon>
Your Profile

</navigation-link>

and in ‘NavigationLink.vue :

<a
v-bind:href="url"
class="nav-link"

<slot></slot>

Upon rendering, the <slot /> will be replaced with the icon and "Your Profile’.

Everything in the parent template is compiled in parent scope; everything in the child template is compiled in the child scope.

<navigation-link url="/profile">

Logged in as {{ user.name }} <!-- since user is defined in parent component -->
</navigation-link>
<navigation-link url="/profile">

Clicking here will send you to: {{ url }} <!-- X url is undefined -->
</navigation-link>

<a>
<slot>Nothing provided. This is the fallback content!</slot>

A "<slot>' outlet without name implicitly has the name “default”.

<div class="container">
<header> <slot name="header"></slot> </header>
<main> <slot></slot> </main>
<footer> <slot name="footer"></slot> </footer>
</div>

then use the "'v-slot " directive on a <template>' to provide some content in parent components:

<base-layout>
<template v-slot:header>
<hl>Here might be a page title</hl>
</template>

<p>A paragraph for the main content.</p>
<p>And another one.</p>

<template v-slot:footer>
<p>Here's some contact info</p>
</template>
</base-layout>

You may also write:

<template v-slot:default>
<p>A paragraph for the main content.</p>
<p>And another one.</p>

</template>

A brief review on shorthands

Original Form Shorthand form
v-bind:value="var" :value="var"
v-on:input="callback" @input="callback"

v-slot:header #header

Custom events

In methods of Vue instance, you may use this.$emit to fire up custom events; this can be useful if you want
to pass something from the component back to its parent.

this.$emit('change', this.val)

Nuxt.js

= Bundler is needed for Single File Components, because " .vue " files aren’t natively understood by browsers.

= Webpack + "'vue-loader" is usually used.

= Recall: loaders are used for source transformation, importing assets, etc.

= The official solution is "@vue/cli’, however you need to deal with "vue-router and "vuex' all yourself.

= Nuxt.js handles routing and state management for you, with server-side rendering enabled and more

https://vue-loader.vuejs.org/
https://cli.vuejs.org/
https://router.vuejs.org/
https://vuex.vuejs.org/

Some content is rendered on the server side, and the rendered version, along with page logic code, is sent to

clients.

Crucial for SEO because some crawlers cannot run JavaScript. Without SSR, they’ll crawl blank pages.

automatically generates the "vue-router configuration

server-side rendering & static sites
= difference: for static sites, all pages are rendered at build time.

better data fetching, other than the traditional approach using ‘mounted() hook
= fetch data with ‘asyncData(ctx) or fetch() hook to get correct SSR results

builtin loading progress bar support (also used by axios module)

https://axios.nuxtjs.org/

Reference: https://nuxtjs.org/docs/2.x/get-started/installation

$ yarn create nuxt-app nuxt-example
$ cd nuxt-example
$ yarn dev

https://nuxtjs.org/docs/2.x/get-started/installation

If any of these folders is missing, create them.

= components: all your Vue.js components (SFCs)
which are then imported into your pages.

= pages: application’s views. routes are generated
automatically.

= assets: uncompiled assets such as your styles,
images, or fonts.

= static: directly mapped to the server root and
contains files that have to keep their names (e.g.
‘robots.txt) or likely won’t change (e.g. the
favicon)

= plugins: usually used for Nuxt.js plugins

= store: Vuex store files. Vuex is enabled only if
‘store/index.js 1is present.

= nuxt.config.js: configuration for Nuxt.js

‘context 1n Nuxt.js

= 3 context’ per page load /router push

= contains router params, Vuex store, Nuxt.js contents, etc.

‘context " is different from Vue.js instance object (' this ")

read the docs carefully. In some hooks (like "asyncData) only "context ' can be used.

‘ctx.app is the root Vue instance

‘ctx.store 1S Vuex store instance

‘ctx.store.state , ctx.store.dispatch , ctx.store.commit

ctx.routeis vue-router instance

‘ctx.params :router params, like "id" in ‘pages/posts/_id.vue’

alias of ‘ctx.route.params’

‘ctx.query :router query, i.e. parsed query string

query string: the "?a=1&b=2" part of URL (note: it should be encoded)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent

some components are also injected into "this ', but this' is not always available
‘this.$route by Vue Router
‘this.$store by Vuex (if enabled)

‘this.$content by Nuxt Content

https://content.nuxtjs.org/

Using Life-Cycle Hooks and Nuxt.js Context

Vue.js projects usually make calls to API in ‘mounted() " hook

export default {
data () {
return { currentWeather: null }
s
async mounted () {
const res = await fetch('https://example.com/weather.json')
this.currentWeather = await res.json()

For Nuxt.js projects, "asyncData(ctx) and ‘async fetch()' is preferred, since they’re designed for SSR.

<template>
<p v-if="$fetchState.pending">Fetching mountains...</p>
<p v-else-if="$fetchState.error">An error occurred :(</p>
<div v-else>
<h1>Nuxt Mountains</hl>

<li v-for="mountain of mountains">{{ mountain.title }}

<button @click="$fetch">Refresh</button>
</div>

export default {
async asyncData({ params }) { // gettings params from nuxt context
const { data } = await axios.get(https://my-api/posts/${params.id}’)
return { title: data.title } // replaced the good old data method

https://s3-ap-southeast-2.amazonaws.com/kruties-diagrams/nuxtjs/NuxtJs_Lifecycle Hooks.pdf

https://s3-ap-southeast-2.amazonaws.com/kruties-diagrams/nuxtjs/NuxtJs_Lifecycle_Hooks.pdf

Example project using fetch

https://codesandbox.io/s/github/nuxtlabs/examples/tree/master/data-fetching/fetch-hook?from-embed

https://codesandbox.io/s/github/nuxtlabs/examples/tree/master/data-fetching/fetch-hook?from-embed

References
s ¥ Vue.js Official Document

= /A Nuxt.js Official Document, with in-depth explanation of internal structure

= ¥ Nuxt Axios Module

= § Nuxt Content

= Read the docs thoroughly before doing your homework

Homework

= Make your own static blog generator!

= Don’t worry, most of the code is written for you, you only need to fill in the blanks in the code.

https://vuejs.org/
https://nuxtjs.org/
https://axios.nuxtjs.org/
https://content.nuxtjs.org/

A Home About

Simple Blog

Getting started Tags

Empower your NuxtJS application with enuxtjs/content module: writeina content/ (vb || c#]

directory and fetch your Markdown, JSON, YAML and CSV files through a MongoDB like API,

acting as a Git-based Headless CMS.

Read more... Weather
Sunny, 31°C

More?

Writing, Fetching and Displaying content.

Read more...

The Third Post

Hi tharal Thic ic tha rd nnetl

