Webpack

bundle your scripts, assets and more

How frontend projects evolved <o

<I--At the end of body block...-->
<script src="js/jquery.js"></script> <!--jQuery first-->

Dynamic pages generated by PHP, etc

<script src="js/jquery.datepicker-zh-CN.min.js"></script

<script src="js/jquery-ui.js'"></script>
</body>

Insert JS Snippets for better interaction = A Typical webpage using jQuery can load dozens of
jQuery plugins.
= All plugins should be load after jQuery itself,

and loading plugins in the correct order can be a

extensive usage of jQuery and its plugins
hassle

l = Since some plugins operates on the DOM, they
, should be load after the full page is downloaded.
Plugin Dependency
= yse window.onload ', or $(function() {3}’

= jQuery injects global variables (‘'window. $ ")

= when the script in "<body>" is loading, the page

load is blocked. (deferred loading? ordering!)

Module Management in Frontend

1. avoid polluting the global namespace (‘window' in browsers)

2. resolve dependencies in the correct order

declare global {
function define(callback: (..args: string[]) => void): void;
function define(deps: string[], callback: (..args: string[]) => void): void;
function define(id: string, deps: string[], callback: (..args: string[]) => void): void;

3

(function(factory) { // code taken from jquery-ui
if (typeof define === "function" && define.amd) {
// AMD. Register as an anonymous module.
define(["jquery"], factory);
} else {
// Browser globals
factory(jQuery);

by
Y(function($) { /* Implementation Omitted*/ }))

= Goal 1 achieved with JIEFE
= Goal 2 achieved with "define " provided by a loader implementing Async Module Definition (e.g. Require]S)

Variables in JavaScript have 3 types of scopes:

= Global Scope (‘Math', ‘alert’, etc.)

= Function Scope (all declarations hoisted to top of function)
m Block Scope (‘let’ / ‘const’)

As shown below, IIFE puts variables in function scope, so they won’t accidentally collide with global vars declared by other scripts.

(function () {
// implementation of script
})() // then invoke the anonymous function

AMD uses a variation of IIFE, where a call to ‘define is preferred.

All 2 goals achieved, but we need a loader library to load AMD Modules. Better approaches?

https://github.com/amdjs/amdjs-api

Plugin Dependency

AMD/UMD/CommonJS/ES Modules

loader-freeg

What an AMD Loader cannot do?

= reduce the number of JavaScript files needed to be

downloaded

HTTP/1.1 has Request Pipelining, but it is not
always available.

opening TCP connections is resource-
consuming (handshaking)

concatenation / minification

= perform transformations on the source code

developers may use language features in newer

versions of JavaScript, e.g. Async Functions

version that runs on older browsers.
use languages other than JavaScript, e.g.

CoffeeScript or TypeScript

https://www.cloudflare.com/learning/performance/why-minify-javascript-code/
https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Statements/async_function
https://babeljs.io/
https://coffeescript.org/
https://www.typescriptlang.org/

However, all those things can be done with a bundler, which takes a JavaScript project as input, and output 1 or

more files suitable for use in browser.

Example: source code of https://www.xuetangx.com

Original code using ES6 destructuring

let test = { a: 1, b: 2 }
const { a, b } = test
console.log(a)

Transpiled by Babel into IE6-compatible code

"use strict';

var test = { a: 1, b: 2 };
var a = test.a, b = test.b;
console.log(a);

https://www.xuetangx.com/

= (Qutdated browsers may lack of modern functionality in JavaScript.

= A famous example is that all versions of IE doesn’t support Promise API.

= Polyfills are pieces of code used to mimic the functionality.

= The most famous polyfill would be core-js, which is used by Babel.

This page doesn't contain any polyfills.

With Pol+ill
Script Failed

With Paluvf
\. Ul Foly

This page contains the core-js polyfill.

Without Polwill
Script executed successfully

https://github.com/zloirock/core-js
http://blog.panda2134.site/polyfill-example/
https://github.com/panda2134/polyfill-example

Other module-related specifications

= Common]S. It is widely used in Node.js projects.

= Use ‘require toimport dependencies, which blocks until the script is loaded.
= Assign to ‘module.exports to export.

/* some Node.js code using CommonJS modules */
const fs = require('fs')
fs.readFile('/etc/fstab', (err, data) => {

if (err) throw err

console.log(data)

1)

module.exports = 'the exported string'

= ES2015 Modules. Both "import ' statement and "import(url) " is supported. The "import(url) function

returns a promise.

/* ES2015 Module Example Code. DO NOT RUN DIRECTLY. */

import transform from './transform.js' /* default import */

import { varl } from './consts.js' /* import a specific item */

import('http://example.com/example-module.js').then(() => { console.log('loaded') })
export const MODE = 'production' /* exported const */

export default { foo: 'bar' } /* default export */

More on ES2015 Modules

= [t came too late! 20 years of its absence witnessed the language being overlooked and teased.

= The earliest proposal on modules came out in 1999, as a major topic for ES4.

= However ES4 failed and it wasn’t until ES6 that native module support came into existence.

https://archives.ecma-international.org/1999/TC39WG/991115-futures.htm
https://cn.history.js.org/part-3.html

Webpack

Up till now, everyone should have learned the capabilities of bundlers by heart. Let’s dive into using Webpack!

Webpack works even if no configuration file is provided. If you want to use it for a hobbyist’s project, that’s
totally fine.

Recall: a bundler takes a project and output files suitable for browser use.

Our simplest project contains only 1 JavaScript file in "'src/index.js . However, it used 2 libraries, which are
located in ‘'node_modules . Webpack computes the dependency graph and pack them altogether.

mkdir simple-webpack-proj

cd simple-webpack-proj

varn # if you haven't installed yarn (you really should!), run npm install -g yarn
yarn add canvas-confetti delay

varn add --dev webpack webpack-cli http-server

A A A A A A

mkdir src dist

Configure HTML File

We certainly need a HTML file, which loads the bundled script. ‘webpack ' outputs to ‘dist/main.js by
default. In the simplest project we load the script manually with a "<script>" tag. Later we’ll meet "html -
webpack-plugin’ which injects the tag into index.html automatically.

<!DOCTYPE html>
<html>
<head>
<title>Webpack 101</title>
</head>
<body>
<h1>Webpack Test Page</hl>
<div id="hint'"></div>
<script src="./main.js"></script> <!--Load main.js after body is loaded-->
</body>
</html>

Write the JavaScript part

Let’s implement some interesting effects. Call ‘canvas-confetti’ to throw some confetti on the screen, and
wait for a second before throwing more.

import confetti from 'canvas-confetti'
import delay from 'delay'

async function main() {
const hint = document.getElementById('hint')
while (true) {
hint.innerText = 'confetti'
await confetti()
hint.innerText = 'cooldown'
await delay(1000)

main()

Build and Run

$ yarn webpack --mode production
$ yarn http-server -o dist

This should open http://127.0.0.1:8080 in your browser.

Webpack Test Page

confetti

http://127.0.0.1:8080/

Getting Serious

Let’s meet configuration files. Put the following code into ‘webpack.config.js :

module.exports = {
mode: 'production',
module: {
rules: [
{
test: /\.m?js$/i, // .js / .mjs
exclude: /node modules/,
use: {
Loader: 'babel-loader', // use babel for compatibility
options: {
presets: [
['@babel /preset-env', { // https://babeljs.io/docs/en/babel -preset-env
useBuiltIns: 'usage', // import used polyfills in core-js automatically
corejs: '3',
targets: {
chrome: '41'",
ie: '9' // and Promise polyfill will be introduced

1]

Then install the required loaders, etc.

$ yarn add core-js@3 regenerator-runtime
$ yarn add --dev babel-loader style-loader css-loader @babel/preset-env g@babel/core

Write some CSS in 'src/assets/main.css

body {
margin: O;
padding: ©;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
height: 100vh;

#hint {
margin-top: Zem;
border-radius: 20px;
font-size: 32px;
padding: lem;
border: 5px solid #1d/8cl;
background-color: #8ddé6f9;

yd

Build again, and see the results.

$ yarn webpack
$ yarn http-server -o dist

Webpack Test Page

confetti

What’s a loader?

Loaders are webpack’s way of preprocessing files. They can apply source transformations, load static assets,
etc.

= ‘babel-loader Loads ES2015+ code and transpiles to ES5 using Babel

= ‘css-loader’ Loads CSS file with resolved imports and returns CSS code

= ‘style-loader Add exports of a module as style to DOM (by dynamically injecting "<style>" tag)
= “filetoader 7 urt—toader Depreciated in webpack@5. Use asset modules instead.

‘useBuiltIns: 'usage' will allow babel to include polyfills on-demand.

In this project, only the following polyfills are added.

The corejs3 polyfill added the following polyfills:
es.object.to-string { "chrome":"41", "jie":"9" 3}
es.promise { "chrome":"41", "ie":"9" 7}

The regenerator polyfill added the following polyfills:

regenerator-runtime

https://webpack.js.org/loaders/babel-loader/
https://webpack.js.org/loaders/css-loader/
https://webpack.js.org/loaders/style-loader/
https://webpack.js.org/guides/asset-modules/

Plugins
Plugins are used to extend webpack’s functionality. We’ll add 2 plugins to our project.

= ‘HtmlWebpackPlugin : insert script tag into HTML automatically

"= ‘ProgressPlugin’: show progress when running ‘webpack"

"ProgressPlugin’ is a builtin plugin.

$ yarn add --dev html-webpack-plugin

Edit ‘webpack.config.js :

const HtmlWebpackPlugin = require('html-webpack-plugin')
const { ProgressPlugin } = require('webpack')
module.exports = {
mode: 'production',
module: {...}, // omitted, too long
plugins: [
new HtmlWebpackPlugin({
template: 'src/index.html',
scriptLoading: 'blocking'
1),
new ProgressPlugin()
i
by

and move ‘dist/index.html to src/index.html .

Now webpack should be automatically generating "dist/index.html = upon every build, while correctly
displaying build progress in percentage.

Checkout the project code here on GitHub.

= ‘master’ branch: configuration-free

= ‘conf’ branch: basic configuration of Babel

= ‘plugin’ branch: with aforementioned plugins installed

https://github.com/panda2134/simple-webpack-proj

Future

= No bundlers? Native support of ES Modules via ‘<script type="module">"
= Use import directly, just like in any other languages!

= Sadly, ES modules aren’t compatible with UMD Modules & Common]S Modules.

= Skypack dynamically transpiles latter into ES modules.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules#applying_the_module_to_your_html
https://www.skypack.dev/

References

» & Require]S. Who cares about it now?

» 5 Asynchronous Module Definition. UMD, which is based on it, is still used by some today

= % Common]$ in Node.js.

https://requirejs.org/
https://github.com/amdjs/amdjs-api
https://github.com/umdjs/umd
https://nodejs.org/api/modules.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/zh-CN/docs/Web/HTTP/Connection_management_in_HTTP_1.x
https://webpack.js.org/
https://babeljs.io/
https://caniuse.com/

