
Webpack
bundle your scripts, assets and more

How frontend projects evolved
Dynamic pages generated by PHP, etc

Insert JS Snippets for better interaction

extensive usage of jQuery and its plugins

Plugin Dependency

A Typical webpage using jQuery can load dozens of

jQuery plugins.

All plugins should be load after jQuery itself,

and loading plugins in the correct order can be a

hassle

Since some plugins operates on the DOM, they

should be load after the full page is downloaded.

use window.onload , or $(function() {})

jQuery injects global variables (window.$)

when the script in <body> is loading, the page

load is blocked. (deferred loading? ordering!)

<body>

 <!--At the end of body block...-->

 <script src="js/jquery.js"></script> <!--jQuery first-->

 <script src="js/jquery.datepicker-zh-CN.min.js"></script

 <script src="js/jquery-ui.js"></script>

</body>

` ` ` `

` `

` `

Module Management in Frontend

1. avoid polluting the global namespace (window in browsers)

2. resolve dependencies in the correct order

GOALS TO ACHIEVE

` `

ASYNC MODULE DEFINITION

declare global {

 function define(callback: (..args: string[]) => void): void;

 function define(deps: string[], callback: (..args: string[]) => void): void;

 function define(id: string, deps: string[], callback: (..args: string[]) => void): void;

}

(function(factory) { // code taken from jquery-ui

	 if (typeof define === "function" && define.amd) {

	 	 // AMD. Register as an anonymous module.

	 	 define(["jquery"], factory);

	 } else {

	 	 // Browser globals

	 	 factory(jQuery);

	 }

}(function($) { /* Implementation Omitted*/ }))

Goal 1 achieved with IIFE

Goal 2 achieved with define provided by a loader implementing Async Module Definition (e.g. RequireJS)

Variables in JavaScript have 3 types of scopes:

Global Scope (Math , alert , etc.)

Function Scope (all declarations hoisted to top of function)

Block Scope (let / const)

As shown below, IIFE puts variables in function scope, so they won’t accidentally collide with global vars declared by other scripts.

AMD uses a variation of IIFE, where a call to define is preferred.

All 2 goals achieved, but we need a loader library to load AMD Modules. Better approaches?

ASYNC MODULE DEFINITION

` `

WHAT IS IIFE (IMMEDIATELY INVOKED FUNCTION EXPRESSION)?

` ` ` `

` ` ` `

(function () {

 // implementation of script

})() // then invoke the anonymous function

` `

https://github.com/amdjs/amdjs-api

loader-free transpiling

Plugin Dependency

AMD/UMD/CommonJS/ES Modules

Bundler

What an AMD Loader cannot do?

reduce the number of JavaScript files needed to be

downloaded

HTTP/1.1 has Request Pipelining, but it is not

always available.

opening TCP connections is resource-

consuming (handshaking)

concatenation / minification

perform transformations on the source code

developers may use language features in newer

versions of JavaScript, e.g. Async Functions

tools like Babel will transpile the code into a

version that runs on older browsers.

use languages other than JavaScript, e.g.

CoffeeScript or TypeScript

BUNDLING TOOLS WRITTEN IN NODE.JS

https://www.cloudflare.com/learning/performance/why-minify-javascript-code/
https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Statements/async_function
https://babeljs.io/
https://coffeescript.org/
https://www.typescriptlang.org/

However, all those things can be done with a bundler, which takes a JavaScript project as input, and output 1 or
more files suitable for use in browser.

Example: source code of https://www.xuetangx.com

Original code using ES6 destructuring

Transpiled by Babel into IE6-compatible code

CONCATENATION AND MINIFICATION

TRANSPILING

let test = { a: 1, b: 2 }

const { a, b } = test

console.log(a)

"use strict";

var test = { a: 1, b: 2 };

var a = test.a, b = test.b;

console.log(a);

https://www.xuetangx.com/

Outdated browsers may lack of modern functionality in JavaScript.

A famous example is that all versions of IE doesn’t support Promise API.

Polyfills are pieces of code used to mimic the functionality.

The most famous polyfill would be core-js, which is used by Babel.

A Polyfill test page, using Promise.Tested on Internet Explorer 8 & Windows XP.

POLYFILLS

` `

https://github.com/zloirock/core-js
http://blog.panda2134.site/polyfill-example/
https://github.com/panda2134/polyfill-example

Other module-related specifications
CommonJS. It is widely used in Node.js projects.

Use require to import dependencies, which blocks until the script is loaded.

Assign to module.exports to export.

ES2015 Modules. Both import statement and import(url) is supported. The import(url) function

returns a promise.

` `

` `

/* some Node.js code using CommonJS modules */

const fs = require('fs')

fs.readFile('/etc/fstab', (err, data) => {

 if (err) throw err

 console.log(data)

})

module.exports = 'the exported string'

` ` ` ` ` `

/* ES2015 Module Example Code. DO NOT RUN DIRECTLY. */

import transform from './transform.js' /* default import */

import { var1 } from './consts.js' /* import a specific item */

import('http://example.com/example-module.js').then(() => { console.log('loaded') })

export const MODE = 'production' /* exported const */

export default { foo: 'bar' } /* default export */

More on ES2015 Modules
It came too late! 20 years of its absence witnessed the language being overlooked and teased.

The earliest proposal on modules came out in 1999, as a major topic for ES4.

However ES4 failed and it wasn’t until ES6 that native module support came into existence.

https://archives.ecma-international.org/1999/TC39WG/991115-futures.htm
https://cn.history.js.org/part-3.html

Webpack
Up till now, everyone should have learned the capabilities of bundlers by heart. Let’s dive into using Webpack!

Webpack works even if no configuration file is provided. If you want to use it for a hobbyist’s project, that’s
totally fine.

Recall: a bundler takes a project and output files suitable for browser use.

Our simplest project contains only 1 JavaScript file in src/index.js . However, it used 2 libraries, which are
located in node_modules . Webpack computes the dependency graph and pack them altogether.

BASIC CONF

` `

` `

TRY IT OUT!

$ mkdir simple-webpack-proj

$ cd simple-webpack-proj

$ yarn # if you haven't installed yarn (you really should!), run `npm install -g yarn`

$ yarn add canvas-confetti delay

$ yarn add --dev webpack webpack-cli http-server

$ mkdir src dist

Configure HTML File
We certainly need a HTML file, which loads the bundled script. webpack outputs to dist/main.js by
default. In the simplest project we load the script manually with a <script> tag. Later we’ll meet html-
webpack-plugin which injects the tag into index.html automatically.

` ` ` `

` ` `

`

DIST/INDEX.HTML` `

<!DOCTYPE html>

<html>

	 <head>

	 	 <title>Webpack 101</title>

	 </head>

	 <body>

	 	 <h1>Webpack Test Page</h1>

	 	 <div id="hint"></div>

	 	 <script src="./main.js"></script> <!--Load main.js after body is loaded-->

	 </body>

</html>

Write the JavaScript part
Let’s implement some interesting effects. Call canvas-confetti to throw some confetti on the screen, and
wait for a second before throwing more.

` `

SRC/INDEX.JS` `

import confetti from 'canvas-confetti'

import delay from 'delay'

async function main() {

	 const hint = document.getElementById('hint')

	 while (true) {

	 	 hint.innerText = 'confetti'

	 	 await confetti()

	 	 hint.innerText = 'cooldown'

	 	 await delay(1000)

	 }

}

main()

Build and Run

This should open http://127.0.0.1:8080 in your browser.

Webpack Test Page
confetti

$ yarn webpack --mode production

$ yarn http-server -o dist

http://127.0.0.1:8080/

Getting Serious
Let’s meet configuration files. Put the following code into webpack.config.js :` `

module.exports = {

 mode: 'production',

 module: {

 rules: [

 {

 test: /\.m?js$/i, // .js / .mjs

 exclude: /node_modules/,

 use: {

 loader: 'babel-loader', // use babel for compatibility

 options: {

 presets: [

 ['@babel/preset-env', { // https://babeljs.io/docs/en/babel-preset-env

 useBuiltIns: 'usage', // import used polyfills in core-js automatically

 corejs: '3',

 targets: {

 chrome: '41',

 ie: '9' // and Promise polyfill will be introduced

 }

 }]

]

 }

 }

}

Then install the required loaders, etc.

Write some CSS in src/assets/main.css :

$ yarn add core-js@3 regenerator-runtime

$ yarn add --dev babel-loader style-loader css-loader @babel/preset-env @babel/core

` `

body {

 margin: 0;

 padding: 0;

 display: flex;

 flex-direction: column;

 justify-content: center;

 align-items: center;

 height: 100vh;

}

#hint {

 margin-top: 2em;

 border-radius: 20px;

 font-size: 32px;

 padding: 1em;

 border: 5px solid #1d78c1;

 background-color: #8dd6f9;

width: 6em;

Build again, and see the results.

Webpack Test Page

confetti

$ yarn webpack # production mode is already specified in config file

$ yarn http-server -o dist

What’s a loader?
Loaders are webpack’s way of preprocessing files. They can apply source transformations, load static assets,
etc.

babel-loader Loads ES2015+ code and transpiles to ES5 using Babel

css-loader Loads CSS file with resolved imports and returns CSS code

style-loader Add exports of a module as style to DOM (by dynamically injecting <style> tag)

file-loader / url-loader Depreciated in webpack@5. Use asset modules instead.

useBuiltIns: 'usage' will allow babel to include polyfills on-demand.

In this project, only the following polyfills are added.

The corejs3 polyfill added the following polyfills:

 es.object.to-string { "chrome":"41", "ie":"9" }

 es.promise { "chrome":"41", "ie":"9" }

The regenerator polyfill added the following polyfills:

 regenerator-runtime

` `

` `

` ` ` `

` ` ` `

SOME BABEL NOTES

` `

https://webpack.js.org/loaders/babel-loader/
https://webpack.js.org/loaders/css-loader/
https://webpack.js.org/loaders/style-loader/
https://webpack.js.org/guides/asset-modules/

Plugins
Plugins are used to extend webpack’s functionality. We’ll add 2 plugins to our project.

HtmlWebpackPlugin : insert script tag into HTML automatically

ProgressPlugin : show progress when running webpack

ProgressPlugin is a builtin plugin.

` `

` ` ` `

INSTALL THE PLUGINS

` `

$ yarn add --dev html-webpack-plugin

Edit webpack.config.js :

and move dist/index.html to src/index.html .

Now webpack should be automatically generating dist/index.html upon every build, while correctly
displaying build progress in percentage.

` `

const HtmlWebpackPlugin = require('html-webpack-plugin')

const { ProgressPlugin } = require('webpack')

module.exports = {

 mode: 'production',

 module: {...}, // omitted, too long

 plugins: [

 new HtmlWebpackPlugin({

 template: 'src/index.html',

 scriptLoading: 'blocking'

 }),

 new ProgressPlugin()

]

}

` ` ` `

` `

Checkout the project code here on GitHub.

master branch: configuration-free

conf branch: basic configuration of Babel

plugin branch: with aforementioned plugins installed

` `

` `

` `

https://github.com/panda2134/simple-webpack-proj

Future
No bundlers? Native support of ES Modules via <script type="module">

Use import directly, just like in any other languages!

Sadly, ES modules aren’t compatible with UMD Modules & CommonJS Modules.

Skypack dynamically transpiles latter into ES modules.

` `

` `

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules#applying_the_module_to_your_html
https://www.skypack.dev/

References
🎯 RequireJS. Who cares about it now?

⚙️ Asynchronous Module Definition. UMD, which is based on it, is still used by some today

⚙️ CommonJS in Node.js.

⚙️ ES2015 Modules.

🌊 HTTP/1.x Connection Management. Important if you want your site to load faster

📦 Webpack. Official Website & Documentation

↔️ Babel.

🤔 CanIUse. Useful place of browser compatibility data

https://requirejs.org/
https://github.com/amdjs/amdjs-api
https://github.com/umdjs/umd
https://nodejs.org/api/modules.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/zh-CN/docs/Web/HTTP/Connection_management_in_HTTP_1.x
https://webpack.js.org/
https://babeljs.io/
https://caniuse.com/

